Algebraic Shifting of Finite Graphs
نویسنده
چکیده
Exterior algebraic shifting and symmetric algebraic shifting of bipartite graphs and chordal graphs are studied in the present paper. keywords : Algebraic shifting, chordal graph.
منابع مشابه
Relative non-Normal Graphs of a Subgroup of Finite Groups
Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...
متن کاملA Kind of Non-commuting Graph of Finite Groups
Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g and [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...
متن کاملON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS
Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $...
متن کاملON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS
Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.
متن کاملTHE ORDER GRAPHS OF GROUPS
Let $G$ be a group. The order graph of $G$ is the (undirected)graph $Gamma(G)$,those whose vertices are non-trivial subgroups of $G$ and two distinctvertices $H$ and $K$ are adjacent if and only if either$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate theinterplay between the group-theoretic properties of $G$ and thegraph-theoretic properties of $Gamma(G)$. For a finite group$G$, we s...
متن کامل